2,231 research outputs found

    Potts Model On Random Trees

    Full text link
    We study the Potts model on locally tree-like random graphs of arbitrary degree distribution. Using a population dynamics algorithm we numerically solve the problem exactly. We confirm our results with simulations. Comparisons with a previous approach are made, showing where its assumption of uniform local fields breaks down for networks with nodes of low degree.Comment: 10 pages, 3 figure

    BKT-like transition in the Potts model on an inhomogeneous annealed network

    Full text link
    We solve the ferromagnetic q-state Potts model on an inhomogeneous annealed network which mimics a random recursive graph. We find that this system has the inverted Berezinskii--Kosterlitz--Thouless (BKT) phase transition for any q1q \geq 1, including the values q3q \geq 3, where the Potts model normally shows a first order phase transition. We obtain the temperature dependences of the order parameter, specific heat, and susceptibility demonstrating features typical for the BKT transition. We show that in the entire normal phase, both the distribution of a linear response to an applied local field and the distribution of spin-spin correlations have a critical, i.e. power-law, form.Comment: 7 pages, 3 figure

    Correlations in interacting systems with a network topology

    Full text link
    We study pair correlations in cooperative systems placed on complex networks. We show that usually in these systems, the correlations between two interacting objects (e.g., spins), separated by a distance \ell, decay, on average, faster than 1/(z)1/(\ell z_\ell). Here zz_\ell is the mean number of the \ell-th nearest neighbors of a vertex in a network. This behavior, in particular, leads to a dramatic weakening of correlations between second and more distant neighbors on networks with fat-tailed degree distributions, which have a divergent number z2z_2 in the infinite network limit. In this case, only the pair correlations between the nearest neighbors are observable. We obtain the pair correlation function of the Ising model on a complex network and also derive our results in the framework of a phenomenological approach.Comment: 5 page

    Series Expansion Calculation of Persistence Exponents

    Full text link
    We consider an arbitrary Gaussian Stationary Process X(T) with known correlator C(T), sampled at discrete times T_n = n \Delta T. The probability that (n+1) consecutive values of X have the same sign decays as P_n \sim \exp(-\theta_D T_n). We calculate the discrete persistence exponent \theta_D as a series expansion in the correlator C(\Delta T) up to 14th order, and extrapolate to \Delta T = 0 using constrained Pad\'e approximants to obtain the continuum persistence exponent \theta. For the diffusion equation our results are in exceptionally good agreement with recent numerical estimates.Comment: 5 pages; 5 page appendix containing series coefficient

    Exact Occupation Time Distribution in a Non-Markovian Sequence and Its Relation to Spin Glass Models

    Full text link
    We compute exactly the distribution of the occupation time in a discrete {\em non-Markovian} toy sequence which appears in various physical contexts such as the diffusion processes and Ising spin glass chains. The non-Markovian property makes the results nontrivial even for this toy sequence. The distribution is shown to have non-Gaussian tails characterized by a nontrivial large deviation function which is computed explicitly. An exact mapping of this sequence to an Ising spin glass chain via a gauge transformation raises an interesting new question for a generic finite sized spin glass model: at a given temperature, what is the distribution (over disorder) of the thermally averaged number of spins that are aligned to their local fields? We show that this distribution remains nontrivial even at infinite temperature and can be computed explicitly in few cases such as in the Sherrington-Kirkpatrick model with Gaussian disorder.Comment: 10 pages Revtex (two-column), 1 eps figure (included

    Simulation of the furnace of the boiler P-49 in the package of applied programs fire 3D

    Get PDF
    The combustion of solid low-grade fuel in LTV-boiler furnaces is a pressing research questions currently. The aim of this work is the creation of a computational grid model LTV-furnace to calculate the package of applied programs FIRE 3D. The study created a model LTV-furnace. The model tested on brown coal from the Nazarovo Deposit. The resulting distribution of temperatures and velocities has proved the performance of the model
    corecore